638 research outputs found

    Correlating magnetic fabrics with finite strain : comparing results from mudrocks in the Variscan and Appalachian Orogens

    Get PDF
    New magnetic anisotropy data from Variscan mudstones collected in the Cantabrian Arc, N Spain constrain the corresponding strain (shortening). The results are based on our previous study of mudrocks from the Valley and Ridge Province (Appalachians) where independent strain quantification of pencil structures permitted a correlation between magnetic fabric and tectonic strain. An exponential relationship between the AMS shape parameter T and tectonic shortening was found for the interval of 10-25% shortening: shortening (%)=17*exp(T), relationship that appears to be supported by tectonic strains up to 40%. The T parameter describes the shape of the magnetic susceptibility ellipsoid, which in pelitic rocks appears more sensitive to strain than the degree of anisotropy parameter P (or P'). In mudrocks from the Cantabrian Arc a positive correlation between T parameter and deformation intensity, reflected by cleavage domains spacing, is observed. Using the above relationship, we estimate the range of tectonic shortening for the Cantabrian mudstones. The correlation between strain and AMS offers a robust estimate of strain magnitude of 10-40% in weakly to moderately deformed clay-rich rocks, where other strain indicators are often lacking or are poorly preserved

    The 40 Ar‐ 39 Ar laser analysis of K‐feldspar: Constraints on the uplift history of the Grenville Province in Ontario and New York

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95104/1/jgrb13261.pd

    Iodine-131 labelled octreotide: Not an option for somatostatin receptor therapy

    Get PDF
    Gamma-emitting radiopeptides are useful for scintigraphy of tumours on the basis of receptor binding. Likewise, ÎČ-emitting radiopeptides may be used in radionuclide therapy of such tumours. As iodine-131 suggested to be suitable for this purpose, experiments were performed using three somatostatin analogues, in which the effects of coupling of a therapeutic dose of 131I to such peptides were investigated. This study deals with the radioiodination of very small amounts of peptide on a therapeutic scale, the required purification procedures after radioiodination, and the influence of high beta fluxes from 131I. On a peptide during radioiodination and purification. Based on the regularly used therapeutic doses of 131I in cancer treatment and our previous experience with [111In-DTPA-D-Phe1]-octreotide, it was assumed that a minimal effective therapeutic dose of 3.7 GBq 131I has to be coupled to a maximum of ≃ 100 ÎŒg peptide, representing only a slight excess of peptide over 131I. This contrasts with non-peptide radiopharmaceuticals in which high compound to radionuclide ratios are usually used. Labelling at low peptide to radionuclide ratios (low labelling yields) results in the formation of di-iodinated compounds, whereas at high peptide to radionuclide ratios (high labelling yields) mono-iodinated products of low specific activity are formed. Thus, after radioiodination the desired mono-iodinated peptide has to be separated from unreacted iodide, and from di-iodinated and unreacted peptide, as both compounds compete for the receptors. Possible radiolysis of the peptide during labelling and separation steps were investigated by irradiating 30 ÎŒg unlabelled peptide with 370 MBq 131I in a small volume. The peptide composition of the incubation mixtures was investigated by high-performance liquid chromatography after irradiation for 30 min to 24 h. The results showed that the peptide was degraded with a half-life of less than 1 h. During the preparation of a real therapeutic dose (at much higher ÎČ-flux) the peptide will be degraded even faster during the various steps required. In conclusion, intact mono-iodinated 131I-labelled somatostatin analogues for peptide receptor therapy will be difficult to obtain

    Metastasis of prostate cancer and melanoma cells in a preclinical in vivo mouse model is enhanced by L-plastin expression and phosphorylation

    Get PDF
    BACKGROUND: Tumor cell migration and metastasis require dynamic rearrangements of the actin cytoskeleton. Interestingly, the F-actin cross-linking and stabilizing protein L-plastin, originally described as a leukocyte specific protein, is aberrantly expressed in several non-hematopoietic malignant tumors. Therefore, it has been discussed as a tumor marker. However, systematic in vivo analyses of the functional relevance of L-plastin for tumor cell metastasis were so far lacking. METHODS: We investigated the relevance of L-plastin expression and phosphorylation by ectopical expression of L-plastin in human melanoma cells (MV3) and knock-down of endogenous L-plastin in prostate cancer (PC3M). The growth and metastatic potential of tumor cells expressing no L-plastin, phosphorylatable or non-phosphorylatable L-plastin was analyzed in a preclinical mouse model after subcutaneous and intracardial injection of the tumor cells. RESULTS: Knock-down of endogenous L-plastin in human prostate carcinoma cells led to reduced tumor cell growth and metastasis. Vice versa, and in line with these findings, ectopic expression of L-plastin in L-plastin negative melanoma cells significantly increased the number of metastases. Strikingly, the metastasis promoting effect of L-plastin was not observed if a non-phosphorylatable L-plastin mutant was expressed. CONCLUSIONS: Our data provide the first in vivo evidence that expression of L-plastin promotes tumor metastasis and, importantly, that this effect depends on an additionally required phosphorylation of L-plastin. In conclusion, these findings imply that for determining the importance of tumor-associated proteins like L-plastin a characterization of posttranslational modifications is indispensable

    An ex vivo Tissue Culture Model for the Assessment of Individualized Drug Responses in Prostate and Bladder Cancer

    Get PDF
    Urological malignancies, including prostate and bladder carcinoma, represent a major clinical problem due to the frequent occurrence of therapy resistance and the formation of incurable distant metastases. As a result, there is an urgent need for versatile and predictive disease models for the assessment of the individualized drug response in urological malignancies. Compound testing on ex vivo cultured patient-derived tumor tissues could represent a promising approach. In this study, we have optimized an ex vivo culture system of explanted human prostate and bladder tumors derived from clinical specimens and human cancer cell lines xenografted in mice. The explanted and cultured tumor slices remained viable and tissue architecture could be maintained for up to 10 days of culture. Treatment of ex vivo cultured human prostate and bladder cancer tissues with docetaxel and gemcitabine, respectively, resulted in a dose-dependent anti-tumor response. The dose-dependent decrease in tumor cells upon administration of the chemotherapeutic agents was preceded by an induction of apoptosis. The implementation and optimization of the tissue slice technology may facilitate the assessment of anti-tumor efficacies of existing and candidate pharmacological agents in the complex multicellular neoplastic tissues from prostate and bladder cancer patients. Our model represents a versatile “near-patient” tool to determine tumor-targeted and/or stroma-mediated anti-neoplastic responses, thus contributing to the field of personalized therapeutics
    • 

    corecore